extension | φ:Q→Out N | d | ρ | Label | ID |
(C2xDic10).1C22 = C42.F5 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 80 | 4- | (C2xDic10).1C2^2 | 320,193 |
(C2xDic10).2C22 = C42.2F5 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 80 | 4 | (C2xDic10).2C2^2 | 320,194 |
(C2xDic10).3C22 = C20.14Q16 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 320 | | (C2xDic10).3C2^2 | 320,308 |
(C2xDic10).4C22 = C8:5D20 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).4C2^2 | 320,320 |
(C2xDic10).5C22 = C8.8D20 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).5C2^2 | 320,323 |
(C2xDic10).6C22 = C42.264D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).6C2^2 | 320,324 |
(C2xDic10).7C22 = C20:4Q16 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 320 | | (C2xDic10).7C2^2 | 320,326 |
(C2xDic10).8C22 = C42.14D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 320 | | (C2xDic10).8C2^2 | 320,330 |
(C2xDic10).9C22 = C8:D20 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).9C2^2 | 320,339 |
(C2xDic10).10C22 = C42.20D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).10C2^2 | 320,341 |
(C2xDic10).11C22 = C8.D20 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).11C2^2 | 320,342 |
(C2xDic10).12C22 = C23.34D20 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).12C2^2 | 320,348 |
(C2xDic10).13C22 = C23.35D20 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).13C2^2 | 320,349 |
(C2xDic10).14C22 = C23.10D20 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).14C2^2 | 320,350 |
(C2xDic10).15C22 = C22:Dic20 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).15C2^2 | 320,366 |
(C2xDic10).16C22 = C20:SD16 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).16C2^2 | 320,468 |
(C2xDic10).17C22 = D20.19D4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).17C2^2 | 320,471 |
(C2xDic10).18C22 = C4:Dic20 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 320 | | (C2xDic10).18C2^2 | 320,476 |
(C2xDic10).19C22 = C40:30D4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).19C2^2 | 320,741 |
(C2xDic10).20C22 = C40.82D4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).20C2^2 | 320,743 |
(C2xDic10).21C22 = C40:2D4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).21C2^2 | 320,761 |
(C2xDic10).22C22 = C40.4D4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).22C2^2 | 320,764 |
(C2xDic10).23C22 = C10.12- 1+4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).23C2^2 | 320,1172 |
(C2xDic10).24C22 = C10.62- 1+4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).24C2^2 | 320,1187 |
(C2xDic10).25C22 = C42.90D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).25C2^2 | 320,1191 |
(C2xDic10).26C22 = C42.97D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).26C2^2 | 320,1204 |
(C2xDic10).27C22 = D4:5Dic10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).27C2^2 | 320,1211 |
(C2xDic10).28C22 = D4:6Dic10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).28C2^2 | 320,1215 |
(C2xDic10).29C22 = C42.115D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).29C2^2 | 320,1233 |
(C2xDic10).30C22 = C42.117D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).30C2^2 | 320,1235 |
(C2xDic10).31C22 = C42.118D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).31C2^2 | 320,1236 |
(C2xDic10).32C22 = Q8xDic10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 320 | | (C2xDic10).32C2^2 | 320,1238 |
(C2xDic10).33C22 = D20:10Q8 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).33C2^2 | 320,1251 |
(C2xDic10).34C22 = C42.133D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).34C2^2 | 320,1254 |
(C2xDic10).35C22 = C10.352+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).35C2^2 | 320,1274 |
(C2xDic10).36C22 = C10.742- 1+4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).36C2^2 | 320,1293 |
(C2xDic10).37C22 = C10.582+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).37C2^2 | 320,1318 |
(C2xDic10).38C22 = C10.812- 1+4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).38C2^2 | 320,1323 |
(C2xDic10).39C22 = C10.632+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).39C2^2 | 320,1332 |
(C2xDic10).40C22 = C42.144D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).40C2^2 | 320,1354 |
(C2xDic10).41C22 = C42.145D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).41C2^2 | 320,1356 |
(C2xDic10).42C22 = C42.148D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).42C2^2 | 320,1361 |
(C2xDic10).43C22 = C42.157D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).43C2^2 | 320,1371 |
(C2xDic10).44C22 = C42.158D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).44C2^2 | 320,1372 |
(C2xDic10).45C22 = C42.165D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).45C2^2 | 320,1384 |
(C2xDic10).46C22 = (D4xC10).C4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 80 | 8- | (C2xDic10).46C2^2 | 320,261 |
(C2xDic10).47C22 = (Q8xC10).C4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 80 | 8- | (C2xDic10).47C2^2 | 320,267 |
(C2xDic10).48C22 = M4(2).19D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 80 | 8- | (C2xDic10).48C2^2 | 320,372 |
(C2xDic10).49C22 = D20.2D4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 80 | 8- | (C2xDic10).49C2^2 | 320,375 |
(C2xDic10).50C22 = D5xC4.10D4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 80 | 8- | (C2xDic10).50C2^2 | 320,377 |
(C2xDic10).51C22 = D20.4D4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 80 | 8- | (C2xDic10).51C2^2 | 320,379 |
(C2xDic10).52C22 = D20.7D4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | 8- | (C2xDic10).52C2^2 | 320,382 |
(C2xDic10).53C22 = D4.D5:5C4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).53C2^2 | 320,384 |
(C2xDic10).54C22 = Dic5:6SD16 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).54C2^2 | 320,385 |
(C2xDic10).55C22 = Dic10:2D4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).55C2^2 | 320,389 |
(C2xDic10).56C22 = C20:Q8:C2 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).56C2^2 | 320,392 |
(C2xDic10).57C22 = Dic10.D4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).57C2^2 | 320,394 |
(C2xDic10).58C22 = (C8xDic5):C2 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).58C2^2 | 320,395 |
(C2xDic10).59C22 = D4:(C4xD5) | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).59C2^2 | 320,398 |
(C2xDic10).60C22 = D4:2D5:C4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).60C2^2 | 320,399 |
(C2xDic10).61C22 = D10:SD16 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).61C2^2 | 320,405 |
(C2xDic10).62C22 = C5:2C8:D4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).62C2^2 | 320,407 |
(C2xDic10).63C22 = D4:3D20 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).63C2^2 | 320,408 |
(C2xDic10).64C22 = D4.D20 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).64C2^2 | 320,410 |
(C2xDic10).65C22 = D20.D4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).65C2^2 | 320,414 |
(C2xDic10).66C22 = C5:Q16:5C4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 320 | | (C2xDic10).66C2^2 | 320,416 |
(C2xDic10).67C22 = Dic5:4Q16 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 320 | | (C2xDic10).67C2^2 | 320,417 |
(C2xDic10).68C22 = Dic5.3Q16 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 320 | | (C2xDic10).68C2^2 | 320,419 |
(C2xDic10).69C22 = Dic5:Q16 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 320 | | (C2xDic10).69C2^2 | 320,420 |
(C2xDic10).70C22 = C40:8C4.C2 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 320 | | (C2xDic10).70C2^2 | 320,424 |
(C2xDic10).71C22 = Dic10.11D4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).71C2^2 | 320,425 |
(C2xDic10).72C22 = D5xQ8:C4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).72C2^2 | 320,428 |
(C2xDic10).73C22 = (Q8xD5):C4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).73C2^2 | 320,429 |
(C2xDic10).74C22 = Q8:2D20 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).74C2^2 | 320,433 |
(C2xDic10).75C22 = D10:4Q16 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).75C2^2 | 320,435 |
(C2xDic10).76C22 = Q8.D20 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).76C2^2 | 320,437 |
(C2xDic10).77C22 = D10:Q16 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).77C2^2 | 320,440 |
(C2xDic10).78C22 = C5:2C8.D4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).78C2^2 | 320,443 |
(C2xDic10).79C22 = Dic5:SD16 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).79C2^2 | 320,445 |
(C2xDic10).80C22 = D4.9D20 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 80 | 4- | (C2xDic10).80C2^2 | 320,453 |
(C2xDic10).81C22 = D4.10D20 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 80 | 4 | (C2xDic10).81C2^2 | 320,454 |
(C2xDic10).82C22 = Dic5:8SD16 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).82C2^2 | 320,479 |
(C2xDic10).83C22 = Dic20:15C4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 320 | | (C2xDic10).83C2^2 | 320,480 |
(C2xDic10).84C22 = Dic10:Q8 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 320 | | (C2xDic10).84C2^2 | 320,481 |
(C2xDic10).85C22 = Dic10.Q8 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 320 | | (C2xDic10).85C2^2 | 320,484 |
(C2xDic10).86C22 = D10.12SD16 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).86C2^2 | 320,489 |
(C2xDic10).87C22 = C8:8D20 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).87C2^2 | 320,491 |
(C2xDic10).88C22 = C20.(C4oD4) | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).88C2^2 | 320,494 |
(C2xDic10).89C22 = C8.2D20 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).89C2^2 | 320,495 |
(C2xDic10).90C22 = Dic5:5Q16 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 320 | | (C2xDic10).90C2^2 | 320,500 |
(C2xDic10).91C22 = Dic10:2Q8 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 320 | | (C2xDic10).91C2^2 | 320,502 |
(C2xDic10).92C22 = Dic10.2Q8 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 320 | | (C2xDic10).92C2^2 | 320,504 |
(C2xDic10).93C22 = D10.8Q16 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).93C2^2 | 320,511 |
(C2xDic10).94C22 = C8:3D20 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).94C2^2 | 320,513 |
(C2xDic10).95C22 = D10:2Q16 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).95C2^2 | 320,514 |
(C2xDic10).96C22 = C2.D8:7D5 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).96C2^2 | 320,515 |
(C2xDic10).97C22 = C40:21(C2xC4) | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).97C2^2 | 320,516 |
(C2xDic10).98C22 = C8.20D20 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | 4- | (C2xDic10).98C2^2 | 320,523 |
(C2xDic10).99C22 = C8.24D20 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 80 | 4 | (C2xDic10).99C2^2 | 320,525 |
(C2xDic10).100C22 = C4:C4.230D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).100C2^2 | 320,597 |
(C2xDic10).101C22 = C4:C4.231D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).101C2^2 | 320,598 |
(C2xDic10).102C22 = C4:C4.233D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).102C2^2 | 320,623 |
(C2xDic10).103C22 = D4.1D20 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).103C2^2 | 320,643 |
(C2xDic10).104C22 = D4.2D20 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).104C2^2 | 320,646 |
(C2xDic10).105C22 = Q8.1D20 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).105C2^2 | 320,655 |
(C2xDic10).106C22 = C20:7Q16 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 320 | | (C2xDic10).106C2^2 | 320,658 |
(C2xDic10).107C22 = C5:2C8:23D4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).107C2^2 | 320,668 |
(C2xDic10).108C22 = C4.(D4xD5) | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).108C2^2 | 320,669 |
(C2xDic10).109C22 = (C2xC10):Q16 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).109C2^2 | 320,678 |
(C2xDic10).110C22 = C5:(C8.D4) | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).110C2^2 | 320,679 |
(C2xDic10).111C22 = C42.214D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).111C2^2 | 320,686 |
(C2xDic10).112C22 = C42.65D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).112C2^2 | 320,687 |
(C2xDic10).113C22 = C42.216D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).113C2^2 | 320,695 |
(C2xDic10).114C22 = C42.71D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 320 | | (C2xDic10).114C2^2 | 320,696 |
(C2xDic10).115C22 = C42.74D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).115C2^2 | 320,701 |
(C2xDic10).116C22 = C20:4SD16 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).116C2^2 | 320,703 |
(C2xDic10).117C22 = C42.80D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).117C2^2 | 320,713 |
(C2xDic10).118C22 = C42.82D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).118C2^2 | 320,716 |
(C2xDic10).119C22 = C20:3Q16 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 320 | | (C2xDic10).119C2^2 | 320,719 |
(C2xDic10).120C22 = C20.11Q16 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 320 | | (C2xDic10).120C2^2 | 320,720 |
(C2xDic10).121C22 = D4.3D20 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 80 | 4 | (C2xDic10).121C2^2 | 320,768 |
(C2xDic10).122C22 = D4.5D20 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | 4- | (C2xDic10).122C2^2 | 320,770 |
(C2xDic10).123C22 = (C2xD8).D5 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).123C2^2 | 320,780 |
(C2xDic10).124C22 = C40:11D4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).124C2^2 | 320,781 |
(C2xDic10).125C22 = C40.22D4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).125C2^2 | 320,782 |
(C2xDic10).126C22 = Dic10:D4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).126C2^2 | 320,785 |
(C2xDic10).127C22 = Dic5:3SD16 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).127C2^2 | 320,789 |
(C2xDic10).128C22 = (C5xQ8).D4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).128C2^2 | 320,793 |
(C2xDic10).129C22 = C40.31D4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).129C2^2 | 320,794 |
(C2xDic10).130C22 = C40.43D4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).130C2^2 | 320,795 |
(C2xDic10).131C22 = D10:8SD16 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).131C2^2 | 320,797 |
(C2xDic10).132C22 = Dic10.16D4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).132C2^2 | 320,800 |
(C2xDic10).133C22 = C40:15D4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).133C2^2 | 320,802 |
(C2xDic10).134C22 = C40.26D4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 320 | | (C2xDic10).134C2^2 | 320,808 |
(C2xDic10).135C22 = Dic5:3Q16 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 320 | | (C2xDic10).135C2^2 | 320,809 |
(C2xDic10).136C22 = D10:5Q16 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).136C2^2 | 320,813 |
(C2xDic10).137C22 = C40.37D4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).137C2^2 | 320,817 |
(C2xDic10).138C22 = M4(2).13D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 80 | 8- | (C2xDic10).138C2^2 | 320,827 |
(C2xDic10).139C22 = D20.38D4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 80 | 8- | (C2xDic10).139C2^2 | 320,828 |
(C2xDic10).140C22 = M4(2).16D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | 8- | (C2xDic10).140C2^2 | 320,831 |
(C2xDic10).141C22 = D20.40D4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 80 | 8- | (C2xDic10).141C2^2 | 320,832 |
(C2xDic10).142C22 = (C2xC10):8Q16 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).142C2^2 | 320,855 |
(C2xDic10).143C22 = (C5xD4).32D4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).143C2^2 | 320,866 |
(C2xDic10).144C22 = 2- 1+4.2D5 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 80 | 8- | (C2xDic10).144C2^2 | 320,873 |
(C2xDic10).145C22 = (C2xD4).9F5 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 80 | 8- | (C2xDic10).145C2^2 | 320,1115 |
(C2xDic10).146C22 = (C2xQ8).7F5 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 80 | 8- | (C2xDic10).146C2^2 | 320,1127 |
(C2xDic10).147C22 = C10.102+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).147C2^2 | 320,1183 |
(C2xDic10).148C22 = C10.52- 1+4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).148C2^2 | 320,1185 |
(C2xDic10).149C22 = C42.94D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).149C2^2 | 320,1201 |
(C2xDic10).150C22 = D4:6D20 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).150C2^2 | 320,1227 |
(C2xDic10).151C22 = C42.114D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).151C2^2 | 320,1231 |
(C2xDic10).152C22 = Dic10:10Q8 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 320 | | (C2xDic10).152C2^2 | 320,1239 |
(C2xDic10).153C22 = C42.122D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).153C2^2 | 320,1240 |
(C2xDic10).154C22 = Q8xD20 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).154C2^2 | 320,1247 |
(C2xDic10).155C22 = Q8:5D20 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).155C2^2 | 320,1248 |
(C2xDic10).156C22 = C20:(C4oD4) | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).156C2^2 | 320,1268 |
(C2xDic10).157C22 = C10.682- 1+4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).157C2^2 | 320,1269 |
(C2xDic10).158C22 = C4:C4.178D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).158C2^2 | 320,1272 |
(C2xDic10).159C22 = C10.362+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).159C2^2 | 320,1275 |
(C2xDic10).160C22 = C10.392+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).160C2^2 | 320,1280 |
(C2xDic10).161C22 = C10.732- 1+4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).161C2^2 | 320,1283 |
(C2xDic10).162C22 = C10.452+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).162C2^2 | 320,1288 |
(C2xDic10).163C22 = (Q8xDic5):C2 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).163C2^2 | 320,1294 |
(C2xDic10).164C22 = C10.502+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).164C2^2 | 320,1295 |
(C2xDic10).165C22 = C10.152- 1+4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).165C2^2 | 320,1297 |
(C2xDic10).166C22 = C10.1182+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).166C2^2 | 320,1307 |
(C2xDic10).167C22 = C10.522+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).167C2^2 | 320,1308 |
(C2xDic10).168C22 = C10.222- 1+4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).168C2^2 | 320,1312 |
(C2xDic10).169C22 = C10.232- 1+4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).169C2^2 | 320,1313 |
(C2xDic10).170C22 = C10.242- 1+4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).170C2^2 | 320,1315 |
(C2xDic10).171C22 = C10.262- 1+4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).171C2^2 | 320,1319 |
(C2xDic10).172C22 = C4:C4.197D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).172C2^2 | 320,1321 |
(C2xDic10).173C22 = C10.802- 1+4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).173C2^2 | 320,1322 |
(C2xDic10).174C22 = C10.822- 1+4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).174C2^2 | 320,1327 |
(C2xDic10).175C22 = C10.842- 1+4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).175C2^2 | 320,1334 |
(C2xDic10).176C22 = C10.672+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).176C2^2 | 320,1336 |
(C2xDic10).177C22 = C10.852- 1+4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).177C2^2 | 320,1337 |
(C2xDic10).178C22 = C10.692+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).178C2^2 | 320,1339 |
(C2xDic10).179C22 = C42.233D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).179C2^2 | 320,1340 |
(C2xDic10).180C22 = C42.137D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).180C2^2 | 320,1341 |
(C2xDic10).181C22 = C42.138D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).181C2^2 | 320,1342 |
(C2xDic10).182C22 = C42.140D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).182C2^2 | 320,1344 |
(C2xDic10).183C22 = C42.141D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).183C2^2 | 320,1347 |
(C2xDic10).184C22 = C42.236D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).184C2^2 | 320,1360 |
(C2xDic10).185C22 = C42.237D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).185C2^2 | 320,1363 |
(C2xDic10).186C22 = C42.150D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).186C2^2 | 320,1364 |
(C2xDic10).187C22 = C42.151D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).187C2^2 | 320,1365 |
(C2xDic10).188C22 = C42.155D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).188C2^2 | 320,1369 |
(C2xDic10).189C22 = C42.189D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).189C2^2 | 320,1378 |
(C2xDic10).190C22 = C42.161D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).190C2^2 | 320,1379 |
(C2xDic10).191C22 = C42.238D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).191C2^2 | 320,1388 |
(C2xDic10).192C22 = Dic10:9Q8 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 320 | | (C2xDic10).192C2^2 | 320,1394 |
(C2xDic10).193C22 = D5xC4:Q8 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).193C2^2 | 320,1395 |
(C2xDic10).194C22 = C42.171D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).194C2^2 | 320,1396 |
(C2xDic10).195C22 = D20:8Q8 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).195C2^2 | 320,1399 |
(C2xDic10).196C22 = C42.241D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).196C2^2 | 320,1400 |
(C2xDic10).197C22 = C42.174D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).197C2^2 | 320,1401 |
(C2xDic10).198C22 = C42.178D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).198C2^2 | 320,1405 |
(C2xDic10).199C22 = C42.180D10 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).199C2^2 | 320,1407 |
(C2xDic10).200C22 = D4.13D20 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | 4- | (C2xDic10).200C2^2 | 320,1425 |
(C2xDic10).201C22 = C2xD8:3D5 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).201C2^2 | 320,1428 |
(C2xDic10).202C22 = C2xSD16:D5 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).202C2^2 | 320,1432 |
(C2xDic10).203C22 = C2xSD16:3D5 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).203C2^2 | 320,1433 |
(C2xDic10).204C22 = C2xD5xQ16 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).204C2^2 | 320,1435 |
(C2xDic10).205C22 = C2xQ16:D5 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).205C2^2 | 320,1436 |
(C2xDic10).206C22 = D20.47D4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | 4- | (C2xDic10).206C2^2 | 320,1443 |
(C2xDic10).207C22 = D20.44D4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | 8- | (C2xDic10).207C2^2 | 320,1451 |
(C2xDic10).208C22 = Q8xC5:D4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).208C2^2 | 320,1487 |
(C2xDic10).209C22 = C10.1042- 1+4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).209C2^2 | 320,1496 |
(C2xDic10).210C22 = C10.1072- 1+4 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | | (C2xDic10).210C2^2 | 320,1503 |
(C2xDic10).211C22 = D20.35C23 | φ: C22/C1 → C22 ⊆ Out C2xDic10 | 160 | 8- | (C2xDic10).211C2^2 | 320,1510 |
(C2xDic10).212C22 = C4xC40:C2 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).212C2^2 | 320,318 |
(C2xDic10).213C22 = C4xDic20 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 320 | | (C2xDic10).213C2^2 | 320,325 |
(C2xDic10).214C22 = C42.16D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).214C2^2 | 320,337 |
(C2xDic10).215C22 = Dic20:9C4 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 320 | | (C2xDic10).215C2^2 | 320,343 |
(C2xDic10).216C22 = D20.32D4 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).216C2^2 | 320,360 |
(C2xDic10).217C22 = D20:14D4 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).217C2^2 | 320,361 |
(C2xDic10).218C22 = Dic10:14D4 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).218C2^2 | 320,365 |
(C2xDic10).219C22 = Dic10.3Q8 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 320 | | (C2xDic10).219C2^2 | 320,456 |
(C2xDic10).220C22 = C42.36D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).220C2^2 | 320,472 |
(C2xDic10).221C22 = Dic10:8D4 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).221C2^2 | 320,475 |
(C2xDic10).222C22 = C20.7Q16 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 320 | | (C2xDic10).222C2^2 | 320,477 |
(C2xDic10).223C22 = Dic10:4Q8 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 320 | | (C2xDic10).223C2^2 | 320,478 |
(C2xDic10).224C22 = C2xC20.44D4 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 320 | | (C2xDic10).224C2^2 | 320,730 |
(C2xDic10).225C22 = C23.23D20 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).225C2^2 | 320,740 |
(C2xDic10).226C22 = C23.46D20 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).226C2^2 | 320,747 |
(C2xDic10).227C22 = C23.49D20 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).227C2^2 | 320,760 |
(C2xDic10).228C22 = C2xDic5.D4 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).228C2^2 | 320,1098 |
(C2xDic10).229C22 = (C4xD5).D4 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 80 | 4 | (C2xDic10).229C2^2 | 320,1099 |
(C2xDic10).230C22 = C2xC20:2Q8 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 320 | | (C2xDic10).230C2^2 | 320,1140 |
(C2xDic10).231C22 = C42.274D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).231C2^2 | 320,1142 |
(C2xDic10).232C22 = C42.276D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).232C2^2 | 320,1149 |
(C2xDic10).233C22 = C42.277D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).233C2^2 | 320,1151 |
(C2xDic10).234C22 = C2xC20:Q8 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 320 | | (C2xDic10).234C2^2 | 320,1169 |
(C2xDic10).235C22 = C10.2- 1+4 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).235C2^2 | 320,1179 |
(C2xDic10).236C22 = C42.88D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).236C2^2 | 320,1189 |
(C2xDic10).237C22 = C42.89D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).237C2^2 | 320,1190 |
(C2xDic10).238C22 = C42.93D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).238C2^2 | 320,1200 |
(C2xDic10).239C22 = C42.96D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).239C2^2 | 320,1203 |
(C2xDic10).240C22 = C42.98D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).240C2^2 | 320,1205 |
(C2xDic10).241C22 = C42.99D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).241C2^2 | 320,1206 |
(C2xDic10).242C22 = D4xDic10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).242C2^2 | 320,1209 |
(C2xDic10).243C22 = C42.102D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).243C2^2 | 320,1210 |
(C2xDic10).244C22 = C42.105D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).244C2^2 | 320,1213 |
(C2xDic10).245C22 = C42.106D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).245C2^2 | 320,1214 |
(C2xDic10).246C22 = C42.228D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).246C2^2 | 320,1220 |
(C2xDic10).247C22 = D20:24D4 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).247C2^2 | 320,1223 |
(C2xDic10).248C22 = Dic10:23D4 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).248C2^2 | 320,1224 |
(C2xDic10).249C22 = Q8:5Dic10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 320 | | (C2xDic10).249C2^2 | 320,1241 |
(C2xDic10).250C22 = Q8:6Dic10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 320 | | (C2xDic10).250C2^2 | 320,1242 |
(C2xDic10).251C22 = C42.135D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).251C2^2 | 320,1256 |
(C2xDic10).252C22 = C42.136D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).252C2^2 | 320,1257 |
(C2xDic10).253C22 = Dic10:19D4 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).253C2^2 | 320,1270 |
(C2xDic10).254C22 = C10.162- 1+4 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).254C2^2 | 320,1300 |
(C2xDic10).255C22 = C10.172- 1+4 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).255C2^2 | 320,1301 |
(C2xDic10).256C22 = Dic10:21D4 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).256C2^2 | 320,1304 |
(C2xDic10).257C22 = C10.792- 1+4 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).257C2^2 | 320,1320 |
(C2xDic10).258C22 = C42.143D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).258C2^2 | 320,1353 |
(C2xDic10).259C22 = D20:7Q8 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).259C2^2 | 320,1362 |
(C2xDic10).260C22 = C42.154D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).260C2^2 | 320,1368 |
(C2xDic10).261C22 = C42.159D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).261C2^2 | 320,1373 |
(C2xDic10).262C22 = C42.160D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).262C2^2 | 320,1374 |
(C2xDic10).263C22 = C42.162D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).263C2^2 | 320,1380 |
(C2xDic10).264C22 = C42.164D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).264C2^2 | 320,1382 |
(C2xDic10).265C22 = C2xD40:7C2 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).265C2^2 | 320,1413 |
(C2xDic10).266C22 = C22xDic20 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 320 | | (C2xDic10).266C2^2 | 320,1414 |
(C2xDic10).267C22 = C10.1472+ 1+4 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).267C2^2 | 320,1505 |
(C2xDic10).268C22 = C4oD20:9C4 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).268C2^2 | 320,593 |
(C2xDic10).269C22 = C2xC10.Q16 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 320 | | (C2xDic10).269C2^2 | 320,596 |
(C2xDic10).270C22 = C4oD20:10C4 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).270C2^2 | 320,629 |
(C2xDic10).271C22 = C4.(C2xD20) | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).271C2^2 | 320,631 |
(C2xDic10).272C22 = C4xD4.D5 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).272C2^2 | 320,644 |
(C2xDic10).273C22 = C42.51D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).273C2^2 | 320,645 |
(C2xDic10).274C22 = C4xC5:Q16 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 320 | | (C2xDic10).274C2^2 | 320,656 |
(C2xDic10).275C22 = C42.59D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 320 | | (C2xDic10).275C2^2 | 320,657 |
(C2xDic10).276C22 = D20:17D4 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).276C2^2 | 320,664 |
(C2xDic10).277C22 = Dic10:17D4 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).277C2^2 | 320,667 |
(C2xDic10).278C22 = D20.37D4 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).278C2^2 | 320,674 |
(C2xDic10).279C22 = Dic10.37D4 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).279C2^2 | 320,677 |
(C2xDic10).280C22 = C42.61D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).280C2^2 | 320,681 |
(C2xDic10).281C22 = Dic10.4Q8 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 320 | | (C2xDic10).281C2^2 | 320,690 |
(C2xDic10).282C22 = Dic10:9D4 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).282C2^2 | 320,702 |
(C2xDic10).283C22 = C20:Q16 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 320 | | (C2xDic10).283C2^2 | 320,717 |
(C2xDic10).284C22 = Dic10:5Q8 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 320 | | (C2xDic10).284C2^2 | 320,718 |
(C2xDic10).285C22 = Dic10:6Q8 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 320 | | (C2xDic10).285C2^2 | 320,721 |
(C2xDic10).286C22 = M4(2).31D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 80 | 4 | (C2xDic10).286C2^2 | 320,759 |
(C2xDic10).287C22 = C2xC4.12D20 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).287C2^2 | 320,763 |
(C2xDic10).288C22 = C2xDic5:3Q8 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 320 | | (C2xDic10).288C2^2 | 320,1168 |
(C2xDic10).289C22 = C10.82+ 1+4 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).289C2^2 | 320,1176 |
(C2xDic10).290C22 = C10.2+ 1+4 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).290C2^2 | 320,1182 |
(C2xDic10).291C22 = C42.87D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).291C2^2 | 320,1188 |
(C2xDic10).292C22 = C42.188D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).292C2^2 | 320,1194 |
(C2xDic10).293C22 = C42.92D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).293C2^2 | 320,1198 |
(C2xDic10).294C22 = C4xD4:2D5 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).294C2^2 | 320,1208 |
(C2xDic10).295C22 = C42.108D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).295C2^2 | 320,1218 |
(C2xDic10).296C22 = C42.229D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).296C2^2 | 320,1229 |
(C2xDic10).297C22 = C4xQ8xD5 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).297C2^2 | 320,1243 |
(C2xDic10).298C22 = C42.125D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).298C2^2 | 320,1244 |
(C2xDic10).299C22 = C42.232D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).299C2^2 | 320,1250 |
(C2xDic10).300C22 = C42.134D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).300C2^2 | 320,1255 |
(C2xDic10).301C22 = Dic10:20D4 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).301C2^2 | 320,1271 |
(C2xDic10).302C22 = D20:22D4 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).302C2^2 | 320,1303 |
(C2xDic10).303C22 = Dic10:22D4 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).303C2^2 | 320,1305 |
(C2xDic10).304C22 = C42.139D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).304C2^2 | 320,1343 |
(C2xDic10).305C22 = Dic10:10D4 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).305C2^2 | 320,1349 |
(C2xDic10).306C22 = Dic10:7Q8 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 320 | | (C2xDic10).306C2^2 | 320,1357 |
(C2xDic10).307C22 = C42.152D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).307C2^2 | 320,1366 |
(C2xDic10).308C22 = C42.166D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).308C2^2 | 320,1385 |
(C2xDic10).309C22 = Dic10:11D4 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).309C2^2 | 320,1390 |
(C2xDic10).310C22 = Dic10:8Q8 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 320 | | (C2xDic10).310C2^2 | 320,1393 |
(C2xDic10).311C22 = D20:9Q8 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).311C2^2 | 320,1402 |
(C2xDic10).312C22 = C42.177D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).312C2^2 | 320,1404 |
(C2xDic10).313C22 = C2xC20.C23 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).313C2^2 | 320,1480 |
(C2xDic10).314C22 = C22xC5:Q16 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 320 | | (C2xDic10).314C2^2 | 320,1481 |
(C2xDic10).315C22 = C2xDic5:Q8 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 320 | | (C2xDic10).315C2^2 | 320,1482 |
(C2xDic10).316C22 = C10.442- 1+4 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).316C2^2 | 320,1488 |
(C2xDic10).317C22 = C2xD4.8D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).317C2^2 | 320,1493 |
(C2xDic10).318C22 = C10.1052- 1+4 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).318C2^2 | 320,1497 |
(C2xDic10).319C22 = (C2xC20):17D4 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).319C2^2 | 320,1504 |
(C2xDic10).320C22 = C2xQ8.10D10 | φ: C22/C2 → C2 ⊆ Out C2xDic10 | 160 | | (C2xDic10).320C2^2 | 320,1617 |
(C2xDic10).321C22 = C2xC4xDic10 | φ: trivial image | 320 | | (C2xDic10).321C2^2 | 320,1139 |
(C2xDic10).322C22 = C4xC4oD20 | φ: trivial image | 160 | | (C2xDic10).322C2^2 | 320,1146 |
(C2xDic10).323C22 = C42.91D10 | φ: trivial image | 160 | | (C2xDic10).323C2^2 | 320,1195 |
(C2xDic10).324C22 = Dic10:24D4 | φ: trivial image | 160 | | (C2xDic10).324C2^2 | 320,1225 |